Electricity Load Forecasting based on Framelet Neural Network Technique
نویسنده
چکیده
Load forecasting is very essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of a power system. This study shows Electricity Load Forecasting modeling based on Framelet Neural Network Technique (FNN) for Baghdad City. Framelet technique is implemented to the time series data, decomposing the data into number of Framelet coefficient signals. The decomposed signals are then fed into neural network for training. To obtain the predict forecast, the outputs from the neural network are recombined using the same Framelet technique. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in short term load forecast.
منابع مشابه
Short term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملA New Iterative Neural Based Method to Spot Price Forecasting
Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...
متن کاملANN-based Short-Term Load Forecasting in Electricity Markets
This paper proposes an Artificial Neural Network (ANN)-based short-term load forecasting technique that considers electricity price as one of the main characteristics of the system load, demonstrating the importance of considering pricing when predicting loading in today’s electricity markets. Historical load data from the Ontario Hydro system as well as pricing information from the neighboring...
متن کامل